

Installation
Getting Started
Properties
Functions
Events
Creating Projectors

How to Order & Register
Licensing & Availability
Technical Support

For up-to-date information please visit our web site:
xtras.tabuleiro.com

WEBXTRA HELP: INSTALLATION

The installation procedure is slightly different depending on the version of
Director and platform used, and the location where Director is installed on
your system. Make sure you have administrative rights to create files in the
directory where Director is installed on your system.

Important: please remember that WebXtra sprites do not spawn a
working web browser on the Macintosh: the Xtra is only fully functional on
Windows. The Macintosh versions of the Xtra are provided as stubs to help
users that must author cross-platform movies on the Mac platform, or need
to work in both platforms with the same set of files and cast libraries,
without any error messages. With these stub Xtras it is perfectly possible to
write a complete application using WebXtra on the Mac and cross publish it
for Windows using Director MX 2004.

INSTALLING THE XTRA ON WINDOWS - Director 8.5 and Director MX
By default the installer will unpack the Xtra, documentation and sample files
to the directory C:\WebXtra_4. To install the Xtra, just copy the file
WebXtra.x32 to the Director 8.5 or Director MX XTRAS folder. If you have
previously installed an older copy of the Xtra make sure to remove or
replace it.

These are the final pathnames for the Xtra file after being copied to
the default location of the Xtras folder in each application:

Director 8.5- C:\Program Files\Macromedia\Director 8.5

\Xtras\WebXtra.x32
Director MX- C:\Program Files\Macromedia\Director

MX\Xtras\WebXtra.x32

No additional configuration is needed. Restart Director for the changes to
take effect. The Xtra should appear in the INSERT->TABULEIRO XTRAS-
>WebXtra menu item.

INSTALLING THE XTRA ON WINDOWS - Director MX 2004
By default the installer will unpack the Xtra, documentation and sample files
to the directory C:\WebXtra_4. To install the Xtra, just copy the file
WebXtra.x32 to the Director MX 2004 XTRAS folder. If your copy of Director
MX 2004 is installed at the default location, the Windows Xtra file will be
located at:

C:\Program Files\Macromedia\Director MX 2004

\Configuration\Xtras\WebXtra.x32

Now you need to install the files necessary for creation of cross-platform
projector for Mac OSX. Go back to the directory where the Xtra files were
unpacked, by default at C:\WebXtra_4. Open the "Cross Platform Resources"
directory. Now copy the files "WebXtra.data" and "WebXtra.rsrc" files to the
"Configuration\Cross Platform Resources\Macintosh\Xtras" directory used by
Director MX 2004. In a default installation of Director these files will end up
at the following locations:

C:\Program Files\Macromedia\Director MX 2004

\Configuration\Cross Platform

Resources\Macintosh\Xtras\WebXtra.data
C:\Program Files\Macromedia\Director MX 2004

\Configuration\Cross Platform
Resources\Macintosh\Xtras\WebXtra.rsrc

Finally, you need to edit the xtrainfo.txt file to include information about
WebXtra. This information is used by the cross-platform publishing features
in Director MX 2004, to locate the files needed when assembling the OSX
version of your projector. The xtrainfo.txt file is located by default at:

C:\Program Files\Macromedia\Director MX 2004

\Configuration\xtrainfo.txt

Double click the file to open it in notepad, or alternatively edit with any other
text editor. You need to add the following line to the end of the file:

[#namePPC:"WebXtra", #nameW32:"WebXtra.x32"]

Restart Director for the changes to take effect. The Xtra should appear in the
INSERT->TABULEIRO XTRAS->WebXtra menu item.

INSTALLING THE XTRA ON MAC OS 8 AND 9 - Director 8.5
The installer will unpack the Xtras, documentation and sample files to a
folder named "WebXtra 4 " on your machine. To install the Xtra just copy the
file "WebXtra" from the MacClassic folder to the Xtras folder of your Director
8.5 installation. The final pathname for the Xtra will be for example:

Macintosh HD:Applications:Macromedia Director
8.5:Xtras:WebXtra

No additional configuration is needed. Restart Director for the changes to
take effect. The Xtra should appear in the INSERT->TABULEIRO XTRAS-
>WebXtra menu item in Director. Please remember that WebXtra sprites do
not spawn a working browser on the Mac: the Xtra is provided only as a
convenience for authors working on cross-platform movies. The stub Xtra
recognizes all standard WebXtra functions and properties, and can be used
to avoid error messages when opening cast libraries that contain WebXtra
castmembers.

INSTALLING THE XTRA ON MAC OSX 10 - Director MX
The installer will unpack the Xtras, documentation and sample files to a
folder named "WebXtra 4 " on your machine.

The first step is to copy the OSX version of the Xtra, which will be
used in the authoring environment and also when creating OSX projectors.
This file is located in the install disk image, at:

WebXtra 4 Folder/MacOSX/WebXtra

This file needs to be copied to the Director MX Xtras folder. The final
pathname for the OSX Xtra in a default installation of Director MX will be:

OSX Volume Name/Applications/Macromedia Director
MX/Xtras/WebXtra

Director MX running on Mac OSX can also be used to create Classic
projectors, for Mac OS versions 8 and 9. In order to enable this feature you

need to copy the Classic version of WebXtra to the correct location in your
Director MX installation. First locate the Classic version of WebXtra in the
install disk:

WebXtra 4 Folder/MacClassic/WebXtra

This file needs to be copied to the following location in the Director MX
folder:

OSX Volume Name/Applications/Macromedia Director
MX/Classic MacOS/Xtras/WebXtra

This will allow creation of both OSX and Classic Projectors from Director MX,
with the right version of the stub Xtra being bundled automatically with your
Projector. Restart Director for the changes to take effect. The Xtra should
appear in the INSERT->TABULEIRO XTRAS->WebXtra menu item the next
time Director MX is started. Please remember that WebXtra sprites do not
spawn a working browser on the Mac: the Xtra is provided only as a
convenience for authors working on cross-platform movies. The stub Xtra
recognizes all standard WebXtra functions and properties, and can be used
to avoid error messages when opening cast libraries that contain WebXtra
castmembers.

INSTALLING THE XTRA ON MAC OSX 10 - Director MX 2004
The installer will unpack the Xtras, documentation and sample files to a
folder named "WebXtra 4 " on your machine.

The first step is to copy the OSX version of the Xtra, which will be
used in the authoring environment and also when creating OSX projectors.
This file is located in the install disk image, at:

WebXtra 4 Folder/MacOSX/WebXtra

This file needs to be copied to the Director MX Xtras folder. The final
pathname for the OSX Xtra in a default installation of Director MX will be:

OSX Volume Name/Applications/Macromedia Director MX

2004/Configuration/Xtras/WebXtra

Director MX 2004 running on Mac OSX can also be used to create Classic
projectors, for Mac OS versions 8 and 9. In order to enable this feature you
need to copy the Classic version of WebXtra to the correct location in your
Director MX installation. First locate the Classic version of WebXtra in the
install disk:

WebXtra 4 Folder/MacClassic/WebXtra

This file needs to be copied to the following location in the Director MX
folder, to be used for cross-platform publishing. Copy it to:

OSX Volume Name/Applications/Macromedia Director MX
2004/Configuration/Cross Platform Resources/Classic
MacOS/Xtras/WebXtra

Fully functional Windows projectors containing WebXtra browsers can be
created directly on Director MX 2004 running on Mac OSX, after installation
of the Windows version of the Xtra. It is located on the install disk, at:

WebXtra 4 Folder/Windows/WebXtra.x32

Copy this file to the Cross Platform resources directory in Director MX 2004,
so that it will be available at:

OSX Volume Name/Applications/Macromedia Director MX
2004/Configuration/Cross Platform
Resources/Windows/Xtras/WebXtra.x32

Finally, you need to edit the xtrainfo.txt file to include information about
WebXtra. This information is used by the cross-platform publishing features
in Director MX 2004, to locate the files needed when assembling the Classic
MacOS and Windows versions of your projector. The xtrainfo.txt file is
located by default at:

OSX Volume Name/Applications/Macromedia Director MX

2004/Configuration/xtrainfo.txt

Double click the file to open it in TextEdit, or alternatively edit with another
text editor. Make sure to save the file in plain text format, though. You need
to add the following line to the end of the file:

[#namePPC:"WebXtra", #nameW32:"WEBXTRA.X32"]

Restart Director for the changes to take effect. The Xtra should appear in the
INSERT->TABULEIRO XTRAS->WebXtra menu item, and will also be
available for publishing of cross-platform projectors. Please remember that
WebXtra sprites do not spawn a working browser on Mac projectors or the
authoring environment: the Xtra is provided only as a convenience for
authors working on cross-platform movies. The stub Xtra recognizes all
standard WebXtra functions and properties, and can be used to avoid error
messages when opening cast libraries that contain WebXtra castmembers.
Windows projectors cross-published in Director MX 2004 have no limitations.

WEBXTRA HELP: GETTING STARTED

WebXtra is an Asset Xtra. Unlike scripting Xtras, Asset Xtras can be
manipulated using the score and cast windows, and their properties can be
adjusted through scripting, just like Director's built-in media types.

To create a WebXtra cast member, go to the INSERT menu, select
TABULEIRO Xtras->WebXtra. If you are using an unregistered version of the
Xtra, Director will display the WebXtra About Box, where you can enter your
serial number and registration information. If the Xtra is already registered
this dialog box will not be displayed.

A new cast member will appear in your Cast Window. It has the
WebXtra icon and thumbnail. Click on it and drag the cast member to the
score. A new sprite will be created on your score window, and it can be used
to adjust the position and the size of the WebXtra browser window. You can
now use scripting functions or the pre-made WebXtra behaviors available
with the product to control the browser component.

For a simple test, please add the following Lingo behavior to the
WebXtra sprite:

Users of Director MX 2004 can also use JavaScript syntax:

Save the behavior, and play your Director movie. The WebXtra browser will
initialize and display the Macromedia web site.

on beginsprite me
 sprite(me.spriteNum).Navigate("www.macromedia.com")
end

on exitframe
 go the frame
end

function beginsprite() {
 sprite(this.spriteNum).Navigate
("www.macromedia.com")
}

function exitframe() {
 movie.go(movie.frame)

WEBXTRA HELP: PROPERTIES

WebXtra cast members have only one property:

browserServicesAvailable - used to determine if a working browser sprite
can be created. WebXtra can only create a working browser sprite when
Internet Explorer 5, 5.5 or 6 is installed, and only in the Windows platform.
This property will return FALSE or 0 when the Xtra is running on the Mac
platform or in a Windows machine that does not provide the required
services. In these cases the Xtra will still operate without any error
messages, but will create just a white sprite instead of a fully operational
browser window.

Lingo example:
if member(x).browserServicesAvailable = false then

go to frame "nobrowseravailable"
end if
JavaScript syntax example:
if (member(x).browserServicesAvailable == false) {

_movie.go("nobrowseravailable")
}

WebXtra sprites have several properties that can be used to obtain
information from the browser object, or set its behavior. Most properties are
available only after the browser is initialized, so make sure to check the
information returned for VOID values.

busy - Read-only property, indicates if the browser is currently busy or
conducting a network operation. It is generally used to display an animation
indicating browser activity. Possible return values are TRUE or FALSE (1 or
0).

Lingo example:
put sprite(x).busy
-- 0
JavaScript syntax example:
if (sprite(x).busy) {

trace("busy")
}

offline - Read-only property, indicates if the browser is currently operating
in offline mode. It is generally used to detect if an internet connection is
available. Possible return values are TRUE or FALSE (1 or 0).

Lingo example:
put sprite(x).offline
-- 0
JavaScript syntax example:
if (sprite(x).offline) {

trace("no internet connection available")
}

silent - This property can be tested and set. When the browser is in silent
mode it will not display dialog boxes with error messages and warnings to

the end user, for example when a page that contains invalid JavaScript code
is loaded. Possible values are TRUE or FALSE (1 or 0).

Example:
sprite(x).silent = 1

image - Read-only property. Takes a screenshot of the browser window and
returns an image object, ready to be used with imaging Lingo functions.
Please make sure the browser window is not covered by other elements
when this function executes.

Lingo example:
put sprite(x).image
--<image:202bc8>
JavaScript syntax example:
trace (sprite(x).image)
//<<image:202bc8>>

html - This property can be tested and set. It returns the current HTML code
of the main page loaded in the browser window, and can also be used to
pass an HTML string to be loaded and displayed by the browser. Important:
getting the HTML property stops and cancels any browser operations
currently in place, so you may want to test if the browser is busy before
issuing this command.

Lingo example:
-- Get the HTML text currently loaded on the browser
member(x).text = sprite(x).html
-- Display new HTML content
sprite(x).html = "My HTML string here"
JavaScript syntax example:
trace (sprite(x).html)
//<BODY>my text here</BODY>

title - Read-only property. Returns the title of the current page loaded in the
browser. Applications usually rely on the event "titleChange" to display this
information without needing to poll the browser continuously.

Lingo example:
put sprite(x).title
--"Home Page"
JavaScript syntax example:
trace (sprite(x).title)
//"Home Page"

url - Read-only property. Returns the url of the current page loaded in the
browser. Applications usually rely on the events "startNavigation" or
"openNewWindow" to store this information without needing to poll the
browser continuously.

Lingo example:
put sprite(x).url
--"http://xtras.tabuleiro.com"
JavaScript syntax example:
trace (sprite(x).url)
//"http://xtras.tabuleiro.com"

browserReference - Read-only property. Returns an unique browser

reference ID number that identifies this WebXtra sprite. This number can be
used with the "openNewWindow" event to redirect creation of new windows
to existing browser sprites. The "Complete Browser" sample included with
the Xtra uses this property to redirect new windows requests to a browser
sprite hosted in a MIAW, please examine the script "WebBrowser_Behavior"
for more information on how it is used.

Lingo example:
put sprite(x).browserReference
--145628
JavaScript syntax example:
trace (sprite(x).browserReference)
//76863

WEBXTRA HELP: FUNCTIONS

WebXtra cast members have only one function:

member(x).register(serialnumber) - This function can be used in
Projectors to register the Xtra at runtime, and allow developers to save
linked casts. It is not necessary for the normal operation of the Xtra, as
WebXtra castmembers already save their registration status in the Director
movie.

Example:
member("mpegfile").register("SERIALNUMBERHERE")

WebXtra sprites have several properties that are used to invoke operations
of the browser component. These functions are usually called by other
interface elements on your movie, such as a menu item used to print the
contents of the browser window or a button used to go back to the last page
visited in the history.

sprite(x).navigate(url) - Used to initiate a navigation to the specified URL.

Example:
sprite(1).navigate("www.macromedia.com")

sprite(x).navigateFrame(url, frameName) - Used to initiate a
navigation to the specified URL in a given HTML frame. This is useful if you
want to have script controls in Director that change the content of just one
frame while a frameset is loaded in the browser.

Example:
sprite(1).navigateFrame("https://www.secure.com",

"_contentFrame")

sprite(x).scrollWindow(xDelta, yDelta) - This function can be used to
create a button that scrolls the page loaded in the browser from Lingo, if
your interface is not displaying the standard browser scroll bars. It accepts
negative and positive values.

Example:
sprite(1).scrollWindow(-10, 100)

sprite(x).goBack() - Navigates to the previous URL in the browser history,
if available.

Example:
sprite(1).goBack()

sprite(x).goForward() - Navigates to the next URL in the browser history,
if available.

Example:
sprite(1).goBack()

sprite(x).goHome() - Navigates to the Home URL set in the system

preferences for the Internet Explorer browser.
Example:
sprite(1).goHome()

sprite(x).goSearch() - Navigates to the default SEARCH URL set in the
system preferences for the Internet Explorer browser.

Example:
sprite(1).goSearch()

sprite(x).stop() - Stops the current browser operation, aborting any
network transfer in progress.

Example:
sprite(1).stop()

sprite(x).refresh() - Reloads the current URL. Default cache settings will
be used to speed up the loading if necessary.

Example:
sprite(1).refresh()

sprite(x).refresh2() - Reloads the current URL, but forces the browser to
ignore any cached information.

Example:
sprite(1).refresh2()

sprite(x).browserSaveAs() - Opens a standard SAVE AS dialog that can
be used to select a filename and options to save the HTML document
currently loaded in the browser.

Example:
sprite(1).browserSaveAs()

sprite(x).browserPageSetup() - Opens the standard PAGE SETUP dialog
that can be used to adjust page properties for future printing operations.

Example:
sprite(1).browserPageSetup()

sprite(x).browserPrintPreview() - Opens the standard PRINT PREVIEW
window, where the user can visualize a print job before actually invoking the
final print operation.

Example:
sprite(1).browserPrintPreview()

sprite(x).browserPrint() - Opens the standard PRINT dialog that can be
used to select a target printer and print the current HTML page.

Example:
sprite(1).browserPrint()

sprite(x).browserPrintNoPrompt() - Prints the current HTML page
without prompting the user for confirmation

Example:

sprite(1).browserPrintNoPrompt()

WEBXTRA HELP: EVENTS

A new addition to WebXtra 4 is the concept of events. The Xtra sprite will
generate scripting events that are sent directly to scripts attached to it, and
pass the normal message chain in Director, reaching frame and movie
scripts if they are not handled at the sprite level. This avoids the need to poll
the browser for information continuously, as your scripts will be informed of
any changes necessary. All events pass the "spriteRef" as the first
parameter, and this value can be used to extract information about the
sprite that generated the event directly.

Some events accept return values to indicate how the browser
should react to a specific situation. Using events it is possible for example to
block the creation of popup windows or authorize navigation to a specific link
or URL, before it takes place. If you need more information please study the
"WebBrowser_Behavior" script, attached to the "Complete Browser" example
that ships with the Xtra. This is a good example of a simple behavior
showing how your scripts can intercept events and act on them.

It is not necessary to implement a script to handle all events if you
are not planning to use them: the Xtra will assume default values if an event
is not handled. You can implement handlers only for the events that are
appropriate for your movie, or you can use the pre-made behaviors available
at our site as a starting point for your own scripts. Below are the events
generated by WebXtra 4:

displayScrollBars(spriteRef) - Generated by the sprite when a browser
window is create or refreshed, to control the display of outer scroll bars in
the main window frame. Scripts can return FALSE to prevent scroll bars from
appearing. The default behavior of the browser is to automatically create
scroll bars.

Lingo example:
on displayScrollBars spriteRef

return false
end
JavaScript syntax example:
function displayScrollBars(spriteRef){

return false
}

showContextMenu(spriteRef) - Called by the Xtra when the user clicks
with the right mouse button over the HTML area, to invoke the standard
browser context menu. You can return TRUE to allow the menu to appear
(the default value), or FALSE to prevent the menu from being displayed.

Lingo example:
on showContextMenu spriteRef

return false
end
JavaScript syntax example:
function showContextMenu(spriteRef){

return false
}

navigateError(spriteRef, URL, frameName) - This event is generated

when the browser can not load an URL. It may be a malformed URL or one
that is not currently online. The event parameters include the name of the
URL that failed as well as the name of the frame containing it if the
navigation was invoked in an HTML frame. The default action is to display
the standard error URL for Internet Explorer, but you can instead return
FALSE from this handler and present your own customized error message.

Lingo example:
on navigateError spriteRef, URL, frameName

alert("There was an error trying to load "&URL)
return false

end
JavaScript syntax example:
function navigateError(spriteRef, URL, frameName){

_player.alert("There was an error trying to load "+URL)
return false

}

fileDownload(spriteRef) - Called by WebXtra when a local file is opened
or a download operation is started. The operation can be canceled by
returning FALSE. The default value is to let the download operation to start.

Lingo example:
on fileDownload spriteRef

return false
end
JavaScript syntax example:
function fileDownload(spriteRef){

return false
}

startNavigation(spriteRef, URL, frameName) - This event is generated
by WebXtra to request authorization to navigate to a given URL. You can use
it to generally monitor all page navigation operations before they occur. It
allows your scripts to restrict navigation to only certain sites, or intercept
special URLs.

Your code should return true to allow the navigation to take place, or
false to cancel it silently. Here are some examples:

Lingo examples:
on startNavigation spriteRef, URL, frameName

-- Only load pages from the macromedia.com domain
if not URL contains "macromedia.com" then

alert("blocked")
return false

end if
-- Alternatively, you could blocks a specific domain
-- if URL contains "macromedia.com" then

-- return false
-- end if
-- You can create your own messages in the HTML text as

well
-- For example the page could contain a link that points

to "lingo:reloadMovie"
if URL contains "lingo:" then

--use the do command to execute the "reloadMovie"
handler

do URL.char[7..the number of chars in URL]
return false

end if
--by default we allow all operations to complete
return true

}
JavaScript syntax example:
function startNavigation(spriteRef, URL, frameName){

// Only load pages from the macromedia.com domain
if (URL.indexOf("macromedia.com") < 0) {

_player.alert("blocked")
return false

}
// Alternatively, you could blocks a specific domain
// if (URL.indexOf("macromedia.com") >= 0) {

// return false
// }
// You can create your own messages in the HTML text

as well
// For example the page could contain a link that points

to "lingo:reloadMovie"
if (URL.indexOf("lingo:") == 0) {

// parse the rest of the URL here, and pass it to the
do command for execution

return false
}
//by default we allow all operations to complete
return true

}

openNewWindow(spriteRef) - This handler is called by the Xtra sprite
when the browser receives a request to create a new popup window. There
are three possible return values:

a) True (or 1) indicates that the operation should be allowed. The
browser will create a standard, independent floating browser window, not
controlled by the Xtra.

b) False (or 0) blocks the creation of the new popup window.
c) Advanced users can also instruct the browser to use an existing

WebXtra browser window to handle the request. This is done by passing the
"browserReference" property of any WebXtra sprite as a return value. The
"Complete Browser" sample movie distributed with the Xtra has a full
implementation of this behavior, where a new movie in a window is created
to handle all popup requests. You can also return the the same browser
window as the target of the popup operation, but some web sites do not
handle this situation well and may generate Javascript errors in their pages.
See the examples below:

Lingo example:
on openNewWindow spriteRef

--if we want to reuse the existing browser sprite for the
new window:

--return spriteRef.browserReference
--
--to allow the independent window to be created:
--return true
--
--in this case we want to block all popups
return false

end
JavaScript syntax example:

function openNewWindow (spriteRef) {
//if we want to reuse the existing browser sprite for the

new window:
//return spriteRef.browserReference
//
//to allow the independent window to be created:
//return true
//
//in this case we want to block all popups
return false

}

closeWindowRequested(spriteRef) - This handler is invoked when the
browser receives a request to terminate the browser window, usually
invoked by a Javascript call (window.close()) in the HTML code. WebXtra will
never automatically destroy the window, but your code can schedule a
window destruction if you want, specially for popup movies. It is important
to notice that it is not recommended to quit the application or forget a
window directly from this callback, as this interrupts normal message
processing. Instead, it is recommended to set a flag or spawn a timeout that
will destroy the window after the current handler has ended its execution.
We recommend checking the Complete Browser sample available at the
Tutorials page on our site for a proper implementation of window
destruction.

Lingo example:
on closeWindowRequested spriteRef

--sets a flag to indicate the window should be destroyed
pMustDestroyWindow = TRUE

end
JavaScript syntax example:
function closeWindowRequested(spriteRef){

//calls a routine to destroy the window
scheduleWindowTermination()

}

progressChange(spriteRef, progress, progressmax) - This handler is
called by WebXtra to signalize a network operation in progress. The two
parameters progress and progressmax indicate how much of the operation
has completed. A progress value of -1 or a progressmax value of 0 indicate
that the operation has completed or was aborted.

Lingo example:
on progressChange spriteRef , progress, progressmax

if progress>-1 and progressmax>0 then
put string((float(progress)/float(progressmax)

*100)) &"% completed"
end if

end
JavaScript syntax example:
function progressChange(spriteRef, progress, progressmax){

if ((progress>-1) && (progressmax>0)){
trace((progress/progressmax*100.0).toString+"%

completed")
}

}

titleChange(spriteRef, newTitle) - Called by WebXtra to signalize that
the title of the document currently loaded has changed, usually when a page
begins to load.

Lingo example:
on titleChane spriteRef , newTitle

(the activeWindow).title = newTitle
end
JavaScript syntax example:
function titleChane(spriteRef, newTitle){

_player.activeWindow.title = newTitle
}

statusTextChange(spriteRef, newText) - This handler is invoked when
the text that needs to be displayed in the status bar has changed.

Lingo example:
on statusTextChange spriteRef , newText

member("statustext").text = newText
end
JavaScript syntax example:
function statusTextChange(spriteRef, newText){

member("statustext").text = newText
}

navigateBackState(spriteRef, enabled) - Called to indicate the current
state of BACK navigation in the browser history, usually when a page
finishes loading, or whenever necessary. Your code can use this information
to enable or disable the BACK button in your interface.

Lingo example:
on navigateBackState spriteRef , enabled

if enabled=true then
sprite(8).membernum = member

("enabledbutton").membernum
else

sprite(8).member.membernum = member
("disabledbutton").membernum

end if
end
JavaScript syntax example:
function navigateBackState(spriteRef, enabled){

if (enabled==true) {
sprite(8).membernum = member

("enabledbutton").membernum
} else {

sprite(8).member.membernum = member
("disabledbutton").membernum

}
}

navigateForwardState(spriteRef, enabled) - Called to indicate the
current state of FORWARD navigation in the browser history, usually when a
page finishes loading, or whenever necessary. Your code can use this
information to enable or disable the FORWARD button in your interface.

Lingo example:
on navigateForwardState spriteRef , enabled

if enabled=true then

sprite(9).membernum = member
("enabledbutton").membernum

else
sprite(9).member.membernum = member

("disabledbutton").membernum
end if

end
JavaScript syntax example:
function navigateForwardState(spriteRef, enabled){

if (enabled==true) {
sprite(9).membernum = member

("enabledbutton").membernum
} else {

sprite(9).member.membernum = member
("disabledbutton").membernum

}
}

secureLockState(spriteRef, state) - Called by WebXtra to inform the
current state of the lock icon, indicating that a secure connection is in place.
Valid state values are from 0 to 6. Values greater than 0 indicate that some
sort of secure connection is in place. See the table below for the meaning of
each value:

0 = Unsecured
1 = Mixed Environment (some elements are secure, others are not)
2 = Secure connection, unknown strength
3 = Secure connection using 40 Bit encryption
4 = Secure connection using 56 Bit encryption
5 = Secure connection using Fortezza encryption
6 = Secure connection using 128 Bit encryption

Lingo example:
on secureLockState spriteRef , state

if state> 1 then
put "Secure connection in place"

end if
end
JavaScript syntax example:
function secureLockState(spriteRef, state){

if (state>1) {
trace("Secure connection in place")

}
}

WEBXTRA HELP: CREATING PROJECTORS

WebXtra can be used to create projector in all operational systems and
platforms supported by Director 8.5, Director MX and Director MX 2004.

Important: please remember that WebXtra sprites do not spawn a
working web browser on the Macintosh: the Xtra is only fully functional on
Windows. The Macintosh versions of the Xtra are provided as stubs to help
users that must author cross-platform movies on the Mac platform, or need
to work with their movies in both platforms with the same set of files and
cast libraries, without any error messages.

CREATING A STANDARD WINDOWS OR MACOS PROJECTOR
(Director 8.5 and MX)

Director 8.5 and MX can only create native projectors. Windows projectors
need to be created on a Windows machine, and Macintosh projectors need to
be created on a Macintosh computer. However, Director movies (.dir files)
containing WebXtra members don't need any modification in order to work
on both platforms. A developer can work primarily on the Mac and only
transfer the final .dir file to Director for Windows in order to create a
Windows projector, or vice-versa. The only requirement is to install and
register the Xtra on both platforms. Instructions for installing the Xtra can be
found in the download packages. Please notice that WebXtra serial numbers
are cross-platform: you can use the same serial number to register the
software on both Mac and Windows.

After the Xtra is installed and registered, just select CREATE
PROJECTOR from the FILE menu in Director, and choose a Director movie to
be included in your projector.

The Xtra is automatically included in the Projector if your first movie
contains a WebXtra cast member. If you are creating a "dummy" projector
that will call your .dxr movie, you can include the Xtra in the Projector using
the MODIFY->MOVIE->XTRAS menu, and adding the Xtra manually.

TIP: You can also deliver the WebXtra file in a folder named XTRAS, located
in the same directory of your Projector, if you do not want to embed the Xtra
file into your projector. This is recommended for faster startup of your
program.

CREATING A CROSS-PLATFORM OR STANDARD PROJECTOR
(Director MX 2004)

Director MX2004 includes the ability to create Windows projectors when
hosted on Mac OS X, and vice-versa. The OSX version of Director MX 2004
can create projectors for older versions of MacOS (8 and 9) as well.
However, this only works correctly if Director is configured to locate and
include the proper Xtra files for "the other" platform. Please make sure the
appropriate files are installed in the Configuration\Cross platform resources
Director folder according to the installation notes, and also make sure the
Configuration\xtrainfo.txt file contains information about WebXtra (this
procedure is also covered in the installation instructions)
Assuming the cross-platform files are already installed and configured
correctly you can invoke the FILE->PUBLISH SETTINGS menu item to

configure the parameters for your projector. The first step is to configure the
FORMATS tab. The Mac version of Director MX 2004 can create separate
projectors for Mac OSX, Classic and Windows, while the Windows version can
create projectors for Windows and OSX only. You should disable the option
to create a Shockwave file, as WebXtra is not available for Shockwave.
In the FILES tab you can add additional Director movies to your projector.
The Xtra will be automatically included if there is at least one WebXtra
castmember in the main director movie. To finalize just click the PUBLISH
button. Director MX 2004 saves the publishing settings with your Director
movie, and future projectors can be created simply by choosing the FILE-
>PUBLISH menu item.

WEBXTRA HELP: HOW TO ORDER & REGISTER

The unregistered version of WebXtra is fully-functional and may be used for
evaluation, nonprofit and educational purposes only: commercial distribution
is strictly prohibited. A registered version of WebXtra can be used in
commercial products, and may be purchased online at
xtras.tabuleiro.com, using a secure server. At our web site you can also
access pages describing our purchase policies, purchase instructions,
payment, delivery and security methods.

If you decide to buy the Xtra you don't need to download a new copy
of the software. After your order is processed you will receive an e-mail with
a serial number to register the software you've already installed on your
machine.

To register you should double-click a WebXtra castmember and enter
your serial number and registration information in the About Box that will be
displayed. Click the REGISTER button to finish. Please keep your serial
number archived. You will need it to register again if you reinstall Director or
WebXtra.

WEBXTRA HELP: LICENSING & AVAILABILITYT

Web is a commercial product. Current price and updated information can be
found at xtras.tabuleiro.com. If your product provides printed
documentation and package we ask you to kindly include the following
copyright information:

WebXtra(tm) (c) Tabuleiro Prod Ltda 2004
All Rights Reserved
Xtra is a trademark of Macromedia, Inc.

No royalty-fees are required for distribution of the Xtra with your projectors.

WEBXTRA HELP: TECHNICAL SUPPORT

Please use the Your Account section available at our web site
xtras.tabuleiro.com to contact technical support. The site also contains
Technotes and other resources that can help you identify and solve the most
common problems quickly.

